An external sodium ion binding site controls allosteric gating in TRPV1 channels.
نویسندگان
چکیده
TRPV1 channels in sensory neurons are integrators of painful stimuli and heat, yet how they integrate diverse stimuli and sense temperature remains elusive. Here, we show that external sodium ions stabilize the TRPV1 channel in a closed state, such that removing the external ion leads to channel activation. In studying the underlying mechanism, we find that the temperature sensors in TRPV1 activate in two steps to favor opening, and that the binding of sodium to an extracellular site exerts allosteric control over temperature-sensor activation and opening of the pore. The binding of a tarantula toxin to the external pore also exerts control over temperature-sensor activation, whereas binding of vanilloids influences temperature-sensitivity by largely affecting the open/closed equilibrium. Our results reveal a fundamental role of the external pore in the allosteric control of TRPV1 channel gating and provide essential constraints for understanding how these channels can be tuned by diverse stimuli.
منابع مشابه
<doi>10.1085/jgp.200509369</doi><aid>200509396</aid>Gating of Acid-sensitive Ion Channel-1: Release of Ca2+ Block vs. Allosteric Mechanism
The acid-sensitive ion channels (ASICs) are a family of voltage-insensitive sodium channels activated by external protons. A previous study proposed that the mechanism underlying activation of ASIC consists of the removal of a Ca2+ ion from the channel pore (Immke and McCleskey, 2003). In this work we have revisited this issue by examining single channel recordings of ASIC1 from toadfi sh (fASI...
متن کاملGating of Acid-sensitive Ion Channel-1: Release of Ca2+ Block vs. Allosteric Mechanism
The acid-sensitive ion channels (ASICs) are a family of voltage-insensitive sodium channels activated by external protons. A previous study proposed that the mechanism underlying activation of ASIC consists of the removal of a Ca2+ ion from the channel pore (Immke and McCleskey, 2003). In this work we have revisited this issue by examining single channel recordings of ASIC1 from toadfish (fASIC...
متن کاملExternal ions are coactivators of kainate receptors.
The activation of ligand-gated ion channels is thought to depend solely on the binding of chemical neurotransmitters. In this study, we demonstrate that kainate (KA) ionotropic glutamate receptors (iGluRs) require not only the neurotransmitter L-glutamate (L-Glu) but also external sodium and chloride ions for activation. Removal of external ions traps KA receptors (KARs) in a novel inactive sta...
متن کاملMechanism of Allosteric Modulation of the Cys-loop Receptors
The cys-loop receptor family is a major family of neurotransmitter-operated ion channels. They play important roles in fast synaptic transmission, controlling neuronal excitability, and brain function. These receptors are allosteric proteins, in that binding of a neurotransmitter to its binding site remotely controls the channel function. The cys-loop receptors also are subject to allosteric mo...
متن کاملStructure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1.
The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal receptor that mediates the flux of cations across the membrane in response to several stimuli, including heat, voltage, and ligands. The best known agonist of TRPV1 channels is capsaicin, the pungent component of "hot" chili peppers. In addition, peptides found in the venom of poisonous animals, along with the lipid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- eLife
دوره 5 شماره
صفحات -
تاریخ انتشار 2016